加入收藏 | 设为首页 | 会员中心 | 我要投稿 |
站内搜索:
日本油研
您当前的位置:首页 > 液压文章资讯 > 液压系统文章资讯

电液比例控制技术的历史与发展趋势

时间:2019-11-23 18:49:36  来源:  作者:  浏览量: 9
简介: 电液比例控制技术的历史与发展趋势1.发展历史电液比例控制技术与传统的电液伺服技术相比,具有可靠、节能和廉价等明显特点,形成了颇具特色的技术分支。电液比例控制技术在20世

 电液比例控制技术的历史与发展趋势

1.发展历史

电液比例控制技术与传统的电液伺服技术相比,具有可靠、节能和廉价等明显特点,形成了颇具特色的技术分支。

电液比例控制技术在20世纪60年代末、70年代初出现,它集中了电气和微电子技术在信号检测、放大、处理和传输等方面的优势,并结合现代工业计算机,实现了机电一体化、远距离控制,使被控系统能按复杂程序动态响应,已经成为现代控制工程的基本技术构成之一。在机电液一体化和工程设备实现计算机控制的技术革命过程中,电液比例控制技术将获得更新、更快的发展。

电液比例控制经过了三个大的发展阶段。

早期的比例阀,产生于20世纪60年代后期,仅将比例电磁铁用于普通液压控制阀,而控制阀原理未变,因而性能较差。频响为1~5Hz,滞环为4%~7%,常用于开环控制。1967年瑞士某公司生产的KL比例复合阀标志着比例控制技术在液压系统中正式开始应用,主要是将比例型的电机械转换器(比例电磁铁)应用于工业液压阀

改进型比例阀产生于20世纪80年代初期,其完善了控制阀设计原理,采用各种内外反馈、电校正、耐高压比例电磁铁,使电控器件特性大为提高,稳态特性接近于伺服阀,频响为5~30Hz,但有零位死区,既可用于开环,也用于闭环控制。到20世纪90年代,随着微电子技术的发展,比例控制技术已达到较完善的程度,主要表现在三个方面:①采用了压力、流量、位移、动压等反馈及电校正手段,提高了阀的稳态精度和动态响应品质,标志着比例控制设计原理已经完善;②比例技术与插装阀已经结合,诞生了比例插装技术;③以比例控制泵为代表的比例容积元件的诞生。

伺服比例阀产生于20世纪90年代中期,其制造精度、过滤精度得以提高,首级阀口零遮盖,无零位死区,用比例电磁铁作电机械转换器,二级阀主级阀口小压差,频响30~100Hz,一般用于闭环控制。

2.发展趋势

由于电液比例复合阀具有好的控制特性、抗污染性、可靠性和经济性,已成液控技术发展趋势,具有广阔的市场前景。其稳态性能的滞环、重复精度、分辨率、非线性等与一般工业用电液伺服阀几乎相当,但动态响应比伺服阀稍低,在较大的参数调节范围内运行,故控制回路中的非线性因素不能忽略。电液比例控制系统的发展趋势主要集中在两大方面。

(1)比例阀。

1)提高比例阀性能,适应机电液一体化主机的发展。提高电液比例阀及远控多路阀的性能,使之适应野外工作条件,并开发低成本比例阀,其主要零件与标准阀通用。

2)比例技术与二通和三通插装技术相结合,形成了比例插装技术,特点是结构简单、性能可靠、流动阻力小、通油能力大、易于集成。此外出现比例容积控制,为中、大功率控制系统节能提供新手段。

3)由于传感器和电子器件的小型化,出现了传感器、测量放大器、控制放大器和阀复合一体化的元件,极大地提高了比例阀(电反馈)的工作频宽。其主要表现有:①高频响、低功耗比例放大器及高频响比例电磁铁的研制;②带集成式放大器的位移传感器(200Hz)的开发,为电反馈比例阀小型化、集成化创造良好的条件;③伺服比例阀(闭环比例阀)内装放大器,具有伺服阀的各种特性,零遮盖、高精度、高频响,但其对油液的清洁度要求比伺服阀低,具有更高的工作可靠性。

(2)比例控制系统。电液比例控制系统属于本质非线性和不确定性系统,如电液伺服阀的压力一流量特性、液压动力机构的摩擦特性和死区特性、负载特性等都是非线性;而不确定性因素则包括外来干扰力、温度变化、油源压力和流量脉动等。因此,比例控制性能提高还有赖于许多新型的控制技术。

1) PID控制。PID控制方法是经典控制理论的代表,它是基于系统误差的现实因素、过去因素、未来因素进行线性组合来确定控制量,具有结构简单、易于实现等特点,在电液伺服系统中广泛应用。但传统的PID控制器采用线性组合方法,难于协调快速性和稳定特性之间的矛盾,在具有参数变化和外干扰的情况下其鲁棒性不够好,而电液比例控制系统的参数是随时间变化的,参数呈非线性变化,因此在相当多的情况下,PID不能取得令人满意的效果,近年来吸收智能控制的基本思想并利用计算机的优势,形成了模糊PID、自适应PID、非线性PID等变种控制器。

2)状态反馈控制。电液控制系统的状态反馈控制方法,除了位置信号进行反馈外,执行器的速度和加速度(压力)也反馈回控制器中,由于液压系统阻尼ξ一般较低,通过加速度(压力)反馈可大大提高系统的阻尼,从而显著地改善了系统的响应。

3)自适应控制。针对电液比例控制系统的非线性和不确定性,自适应控制的应用非常广泛,因为自适应控制算法能自动辨识时变系统参数,相应地改变控制作用,使系统的性能达到最优或次最优。当前应用最成熟的主要有两类:①自校正控制(STC);②模型参考自适应控制(MRAC)。STC -般适用于慢时变的对象调节,而具有参数突变和突加外负载干扰的电液比例控制系统往往不能满足,因此,液压系统中应用的自适应控制大多为MRAC或其变形。自适应控制尽管极大地改善了系统性能,但在使用过程中也带来了一些问题,如对于STC,由于要进行大量的辨识计算,对于响应很快的系统进行实时控制很难;而对于MRAC,主要的困难是选择一个合适的参考模型以及要按李雅普诺夫稳定理论或波波夫超稳定理论来设计自适应律。所以吸收其他控制方法的优点,研究算法简便、鲁棒性强的自适应律是近年来发展的方向,如自适应前馈控制、鲁棒自适应控制,非线性自适应控制等。

4)变结构控制(VSC)。变结构控制是一种根据系统状态偏离滑模的程度来变更控制器的结构,使系统按照滑模规定的规律运行的一种控制方法,其在电液控制系统应用较广泛的是滑模控制(Sliding Mode Control)。VSC系统与传统的控制系统相比,具有控制规律简单,可以协调动态和稳态性能间的矛盾,特别是其滑动模态(SM)对系统参数变化和外部干扰具有完全不变性,其主要缺点是由于频繁切换而存在较严重的抖动现象,另外,它也不宜应用于采样周期较长的控制系统。近年来,出现了模糊控制和神经网络控制实现的离散变结构控制。

5)模糊逻辑控制(FLC)。FLC的引入主要是考虑到可不需要建立数学模型,而依靠模糊推理或其他先验知识来调定控制器。模糊控制适用于被控参量无精确的表示方法和被控对象各种参数之间无精确的相互关系的情况。在这种情况下,FLC比精确控制优越,而电液比例控制系统正属于此类情况(如影响系统动态品质的液压固有频率ω和阻尼比ξ等,与系统的软量有关,难以精确算出)。FLC在电液比例系统中的应用主要有两种形式:①模糊控制器直接驱动对象;②用来确定状态反馈控制器的反馈增益。

6)神经网络控制(NNC)。NNC是模仿人类的感观和脑细胞的工作原理而工作的,系统中的硬件是模仿神经细胞网络,软件则是模仿神经细胞的工作方式,即每个神经单元接受信号按“乘权值后相加”,输出信号按“阈值”大小确定,而“权值”和“闽值”的确定是通过已知输入、输出关系和合适的算法使输出的实际值同要求值间的偏差尽量小。

来顶一下
返回首页
返回首页
 
上一篇:电液伺服控制技术的历史与发展趋势 
下一篇:更换铲车液压油的简便方法 
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
全站热门文章
液压系统怎么进行酸洗 液压系统酸洗流程工艺及配方说

     针对液压系统的管道酸洗可以有效地将管内壁氧化物彻底清除,还能预防管壁过腐蚀、管道内壁再次锈蚀及管内残留化学反应沉积物等现象的发生,下面为大家介绍

顺序阀出现乱序、噪音如何解决

  顺序阀出现乱序如何解决:1、首先检查顺序阀是否装反。2、顺序阀设定压力不合理。在乱序位置适当提高顺序阀设定压力。比如调整到120bar。3、如果用的是流量再生阀,

液压式大包连浇小车的维修_同步系统的改造

   液压式大包连浇小车的维修_同步系统的改造 大包连浇装置是连铸机进行钢包更换,实现多炉浇注的必备装置。它运行的效果直接影响着连铸机的生产。常用的大包连浇

分离式液压站_液压泵站

   分离式液压千斤顶液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静

液压泵结构和液压泵工作原理描述

  齿轮泵描述齿轮泵结构图 CB-B型齿轮泵是我国最基本最为典型的外啮合齿轮泵,该泵结构如图所示。它由前盖3、泵体2、后盖1、一对齿数相同的齿轮7和9组成。齿轮

你可知道为什么液压缸的压力等级是6.3, 16, 25, 31.5M

   引言你可知道粗糙度为什么是0.8, 1.6, 3.2, 6.3, 12.5?你可知道油缸缸径为什么是63, 80, 100, 125?你可知道油缸压力为什么是6.3,

东风4型内燃机车静液压马达油封漏油原因及措施

   东风4型内燃机车静液压马达油封漏油原因及措施1.简介 东风4B、4C型机车长时间处于全负荷、高速运用状态,静液压马达油封漏故障率明显提高,静液压马达油封频繁漏

液压马达发热的原因及解决方式

   液压马达和液压泵是液压系统中最主要的两个发热源。液压马达是执行机构,主要执行旋转运动,是把压力能转化为机械能的过程。液压泵是机械能转化为压力能的过程,也

不同的双缸同步回路

   机械同步就不说了,从简单到复杂:
1. 分流阀:准确率差,流量要选小不选大(和选女友年纪的原则相同),因为准确率是以最大流量算的。
2.

工程机械液压油箱设计应注意的关键问题

     由于工程机械具有移动性的特点,所以其液压油箱的设计与普通液压油箱设计有所不同,下面就介绍下在移动式工程机械液压油箱设计中

轴向柱塞泵的工作原理与结构

   轴向柱塞泵的工作原理与结构 1.轴向柱塞泵 为了构成柱塞的往复运动条件,轴向柱塞泵都具有倾斜结构,所以轴向柱塞泵根据其倾斜结构的不同分为斜盘式(直轴式

摆线液压马达端面划伤的修复

   摆线液压马达端面划伤的修复1.简介 由于摆线液压马达是一种低速大扭矩多功能液压马达,根据工作需要在工程机械上选用十分广泛。某摆线马达,配流结构为平面配流,排

常见液压马达承受径向力和轴向力的情况

   外五星液压马达可承受较高的径向力和轴向载荷,这取决于外五星液压马达所选用的是圆锥滚子轴承。客户在选型中需要承载轴向力时可选用外五星液压马达。

电液伺服阀的内泄漏特性及故障在线分析

   电液伺服阀的内泄漏特性及故障在线分析 在汽轮机电液控制系统( DEH)中,作为电液转换元件电液伺服阀的作用十分重要。电液伺服阀稳定可靠性直接影响到机组的安全稳

加热炉_步进炉水平液压缸比例控制失效故障

   加热炉_步进炉水平液压缸比例控制失效故障 (1)步进炉水平液压缸的比例控制 步进炉水平缸所驱动的负载较大,具有很大的惯性。为了防止冲击,在步进炉水平缸刚启

多路阀的密封出现泄漏怎么办?

   多路阀的密封等设备由于长时间大扭矩机械运动,齿轮箱啮合间隙变大,造成较大的噪音及设备振动。加之密封部位长期处于高速、高温状态下运

液压油缸如何保养

   因为液压油缸要承受很大的压强,负载越重,它的压强就会越大,因此,做好液压油缸的保养工作是整个液压系统的维护最重要的一环。液压油缸

力士乐液压启-停技术有效提高工程机械燃油经济性

     多年来,液压技术已被证明非常适合移动设备用来解决其面临的不断发展的挑战。更高的性能要求催生了压力更高的液压泵和马达。对

比例多路换向阀

   比例多路换向阀 多路换向阀是指以两个以上的换向阀为主体,集安全阀、单向阀、过载闷、补油 阀、分流阀、制动阀等于一体的多功能组合阀,它具有结构紧凑、管路简单

汽轮机液压故障_油动机故障现象及分析

   汽轮机液压故障_油动机故障现象及分析 DEH控制系统(数字电液控制系统)由EH油系统、DEH数字控制器以及汽轮发电机组构成。系统采用数字计算机作为控制器,电液转换

液压机工作效率提升技巧的方法有哪些

   液压机其在机械加工中很常见且会经常使用,而且又是网站产品和关键词,所以,有必要进行该产品的熟悉和了解,好让大家知道它是什么以及怎样来正确合理使用,得到预

履带底盘与挖掘机有着重大的联系

  说到履带底盘,大家应该对其不陌生,众所周知,履带底盘在挖掘机中的应用!下面的文章就带大家了解一下挖掘机吧!从20世纪后期开始,国际上挖掘机的生产向大型化、微型化、多

超级摆缸径向柱塞液压马达的优点

   超级内五星与普通内五星之间的优点1.原先的内五星马达受高压或冲击后经常出现的故障是轴承套碎裂。HZH超级马达通过材料与结构的改变彻底解决这一问题。即使

与发动机转速连动控制的负载敏感系统

     随着发动机的转速改变油泵流量随之变化,要求油泵控制目标补偿压差和多路阀进出口压差也随之改变,要求目标补偿压差随发动机转速

挖掘机回转马达故障的分析及排除方法

   回转马达一、液压马达回转无力液压马达是执行机构,设在液压传动的末端,是把液压能转换为机械能,使平台回转。此马达采用轴向柱塞点接触中转速的液压马达。1、现

电磁换向阀

   电磁换向阀 电磁换向阀又称电动换向阀,简称电磁阀,它是借助电磁铁的吸 力推动阀芯移动的。 图G所示为三位四通电磁换向阀的结构原理和职能符号。阀的两端各有

多路阀实验时的注意要点

   多路阀主要是一种在工程机械,矿山,冶金等不同的行业和领域中使用范围非常广泛的一种设备,主要是带有压力补偿的负载敏感比例换向多路阀

过滤器的故障分析与排除

   过滤器的故障分析与排除过滤器带来的故障包括过滤效果不好给液压系统带来的故障,例如因不能很好过滤,污物进入系统带来的故障等。1.滤芯破坏变形这一故障现象表现为

变频调速功率适应型液压系统的研究

   1 引言 节能一直是液压技术的主要研究方向之一。节能型液压回路包括压力适应型回路、流量适应型回路和功率适应型回路,其中功

液压缸的维护、维修知识总结

   1.液压缸的日常检查内容①液压缸的泄漏情况。②液压缸的动作状态是否正常。③液压缸运行时的声音和温度有无异常。④活塞杆有无伤

文章分类
  【 液压机 】文章资讯
  【 液压系统 】文章资讯
  【 液压泵 】文章资讯
  【 液压阀 】文章资讯
  【 液压缸 】文章资讯
  【 液压马达 】文章资讯
  【 液压附件 】文章资讯
  【 工程机械 】文章资讯
热门文章排行
  • 全部
  • 本月
  • 本周
  • 今天
推荐资讯
压力继电器的故障分析与排除
压力继电器的故障分析
液压控制系统的分类
液压控制系统的分类
液压控制系统的组成
液压控制系统的组成
推荐产品
468-800-50BM/日本Azbil TACO气动元件
468-800-50BM/日本Azb
日本油研方向控制阀
日本油研方向控制阀
DSLHG-10-1-ET-A200-C-13日本油研座阀型电液换向阀
DSLHG-10-1-ET-A200-C
LSVHG-04EH-750-2P-ET-WEA-B1-20日本油研伺服阀
LSVHG-04EH-750-2P-ET
EHFBG-06-250-C-E-S-5001日本油研电液比例阀
EHFBG-06-250-C-E-S-5
PM37-06BC-3.7-A240-30日本油研PM系列电机泵
PM37-06BC-3.7-A240-3
VPVQQ-PSAW-06C-PSSO-06BA-60日本油研变量叶片泵
VPVQQ-PSAW-06C-PSSO-
ASR2-C-CXD200N-A00-12日本油研伺服电机驱动泵
ASR2-C-CXD200N-A00-1
日本油研高压柱塞泵A3H145-FR14K-10
日本油研高压柱塞泵A3
日本油研高压柱塞泵A3H56-FR01KK-10
日本油研高压柱塞泵A3
栏目最新文章