加入收藏 | 设为首页 | 会员中心 | 我要投稿 |
站内搜索:
日本油研
您当前的位置:首页 > 液压文章资讯 > 液压泵文章资讯

水环式真空泵的工作原理

时间:2019-11-28 10:53:02  来源:  作者:  浏览量: 31
简介: 一、用途及使用范围
SK系列水环工真空泵及压缩机是用来抽吸或压送气体和其它无腐蚀性、不溶于水、不含有固体颗粒的气体,以便在密闭容器中形成真空或压力,从而满足

一、用途及使用范围
SK系列水环工真空泵及压缩机是用来抽吸或压送气体和其它无腐蚀性、不溶于水、不含有固体颗粒的气体,以便在密闭容器中形成真空或压力,从而满足

具体工艺流程要求的设备。吸入或压送的气体中允许含有少量液体。

SK系列水环式真空泵及压缩机广泛应用于机械、石油、化工、制药、食品、陶瓷、制糖、印染、冶金、环保及电子等行业。

由于在工作过程中,该类泵对气体的压缩是在等温状态下进行的,因此在压送或抽吸易燃、易爆的气体时,不易发生危险,所以其应用更加广泛。

泵型号说明。例如:SK-122i2J

SK表示为水环真空泵;12表示该泵的*大抽气量为12m3/min(立方米/分钟)

二、工作原理

叶轮3偏心地安装在泵体2内,起动时向泵内注入一定高度的水作为工作液,当叶轮3按图示方向旋转时,水受离心力的作用在泵体内壁形成一旋转的封闭

水环5,水环上部内表面与轮毂相切,水环的下部内表面刚好与叶片顶端接触。此时叶轮轮毂与水环之间形成一个月牙形空间,而这一空间又被叶轮分成与叶

片数目相等的若干个小腔。如果以叶轮的上部0°为起点,那么叶轮在旋转前180°时小腔的容积由小变大,且与端盖上的吸气口相通,其空间内的气体压力降

低,此时气体被吸入,当吸气终也时小腔则与吸气口隔绝;当叶轮在180°到360°的旋转过程中,水环内表面渐渐与轮毂靠近,小腔由大变小,其空间内气体

压力升高,高于排气口压力时,当小腔与排气口相通时,气体被排出。

; 叶轮每旋转一周,叶片间空间(小腔)吸、排气一次,若干小腔不停地工作,如此往复,泵就连续不断地抽吸或压送气体。由于在工作过程中,做功产

生热量,会使工作水环发热,同时一部分水和气体一起被排走,因此,在工作过程中,必须不断地给泵供水,以冷却和补充泵内消耗的水,满足泵的工作要求

当泵排出的气体不再利用时,在泵排气口一端接有汽水分离器(可自己制作一水箱代替),废气和所带的部分水排入汽水分离器后,气体由排气管排出,

水由于重力作用留在分离器内并经回水管供至泵内循环使用。随着工作时间的处长,工作液温度会不断地升高,这时需给汽分离器加入一定量的冷水(可以用

自来水),以降低工作液的温度,保证泵能达到所要求的技术要求和性能指标当做为压缩机使用时,泵排气口接有汽车分离器,汽车混合物进入汽水分离器后

自动分离,气体由排气管输送到所需系统而工作液经过自动溢水开关放出,压缩气体时,工作液极易发热,由泵出口排出时,温度会变得较高,因此在汽水分

离器的底部,要不断地供给冷水,以补充被放走的热水,同时起冷却作用,使工作液温度不致过高,从而保证压缩机性能,达到技术指标,满足工作要要求。

三、结构说明

泵由泵体、前后端盖、叶轮、轴等零件组成。进气管和排气管通过安装在端盖上的园盘之上的吸气孔及排气孔与泵腔相连,叶轮用键固定于轴上,偏心

地安装在泵体中。泵两端的总间隙由泵体和园盘之间的垫来调整,叶轮与前、后园盘之间的间隙由轴套(SK-1.5/3/6)推动叶轮来调整,两端间隙保证均匀。

而SK-12以上泵,轴与叶轮为过盈配合,此间隙由前端定位时确定。SK-120无轴套,其余结构与SK-6/12/30/42/60/85相同。叶轮两端面与前、后园盘的间隙决

定了气体在泵腔内由进气口至排气口流动中损失的大小及其极限压力。

填料安装在两端盖内,密封水经由端盖中的小孔进入填料中,冷却填料及加强密封效果。叶轮形成水环所需的补充水由供水管供给(自来水),供水管

也可与汽水分离器连在一起循环供水。

如果密封形式采用机械密封时,机械密封安装在填料空腔,无需填料,填料压盖换成机械密封压盖,其余结构相同。

轴承由园螺母固定在轴上。在端盖上安装有园盘,园盘上设有吸、排气孔和橡皮球阀。橡皮球阀的作用是当叶轮叶片间的气体压力达到排气压力时,在

排气口以前就将气体排出,养活了因气体压力过大而消耗的功率,降低了功率消耗。

四、设备说明

系列水环式真空泵及压缩机系统由真空泵(压缩机)、联轴器、电动机、汽水分离器及管路等组成。

真空泵及压缩机与汽水分主器的工作过程如下:气体由管路经阀门进入真空泵或压缩机,然后经导气弯管排入汽水分离器中,经汽水分离器排气管排出

。当作为压缩机使用时,压缩机排出的汽水混合物在汽水分离器中分离后,气体经阀门输送到需要压缩的气体的系统,而水则留在汽水分离器内,汽水分离器

内的水位通过自动溢水开关进行调整,当水位高于所要求水位时,溢水开关打开,水从溢水管溢出;当水位低于要求水位时,溢水开关关闭,汽水分离器中水

位上升,达到所要求水位。真空泵或压缩机内的工作液是由汽水分离器供给(也可用自来水)的,供水量的大小,由供水管上的阀门来调整。

气体抽吸和压送系统的区别仅在于汽水分离器的内部构造有所不同。抽吸气体时,吸气口压力低于大气压,而排气口压力等于大气压,汽水分离器只有

溢水管;压送气体时,吸气口为常压(也可为真空状态),排气口压力高于一个大气压,为保证输送气体压力,汽水分离器的水位通过溢水开关来控制。

六、设备安装


1.泵和电机的安装:
真空泵和压缩机在安装前,用手转动联轴器,保证泵内没有卡住和其它损坏现象。整套设备运抵安装地点时,如果包装已损坏或受潮,以及泵已经出厂八

个月以上时,应在安装前全部拆开检查。如果真空泵或压缩机正常,将泵和电动机安装在泵座上时,应校正电动机轴与泵轴的同心度,因为如果电动机轴与泵

轴之间有极小的倾斜也会引起轴承发热和零件的严重磨损。校正方法如下:将直尺平行放在联轴器上,在整个圆周的任何位置直尺应与联轴器圆周完全密合,

没有间隙,且联轴器的轴向间隙相等时,则达到了所要求的同心度。
电动机与泵轴,即使有极小的倾斜,也会引起轴承发热和零件过早磨损等严重后果,如果安装正确,用后即能轻松地转动泵轴。在泵的进气口应安装过滤

装置,以防异物进入泵腔内。
2.汽水分离器的安装:
汽车分离器根据外形图安装在地基上。
如果必须改变安装位置时,应注意分离器的联接管路不宜过长,转弯不宜过急,否则水和气在管道中的流动损失必将增加,从而增加了泵排气端的压力,

这样就降低了气量和真空度,增加了功率消耗。
3.泵与汽水分离器的管路安装:
泵的排气管应与汽水分离器进撖这相连,当作压缩机使用时,汽水分离器的排气管应和使用压缩空气的系统相连接。
抽真空时如不设排气管路,气体则由分离器上的排气口直接排至大气。如需排至室外,则可将分离器的排气口通过管路引到室外。
在泵的进气管路上应安装阀门进行控制,以便在停车时,防止泵内工作液因系统的真空吸力,回流到系统。
当作为压缩机使用时,若排气管路存在压力,那么在汽水分离器的排气管路上也应安装阀门。
4.调节结构:
SK系列真空泵是通过装在进气管在进气管路上的阀门来调整真空度和气量。当作为压缩机使用时,可用安装在排气管路上的阀门调节压气装置的压力。
当被压缩气体因为其使用条件不允许排出时,应在进气管和排气管之间装有导气管,其直径与阀门直径相同,以便在*大限度内调节气量与压力。
5、启动及停车
启动:
长期停车的泵在开动以前,必须用手转动数周,保证泵内没有卡住或其它损坏现象。
启动按以下顺序进行:
(1)关闭进气管路上的阀门4;
(2)启动电动机(电机的转向必须正确);
(3)打开供水管路上的阀门6,向泵内供水至符合规定要求为止。
(4)当泵达到极限真空或*大压力时,打开进气管路上阀门4,泵开始正常工作。
(5)调整填料压盖,当水成滴往外滴为*佳。
(6)通过阀门来调整泵的供水量,保证泵在要求的技术条件下运转,使功率消耗*小,达到性能指标,满足工作要求。
(7)调整供给汽水分离器的水量,以便用*小的耗水量,保证泵所要求的技术规范
(8)当泵在极限压力下工作时,泵内可能由于物理作用则发生爆炸时,但功率消耗并不增大,可将进气管路上的阀门打开,使之进入少量气体,爆炸声

随即消失。如果爆炸声并不消失,且功率消耗增大,则表明泵已发生故障,应停车检查。
停车:
停车按以下顺序进时:
(1)关闭进气管上的阀门。(做压缩机用时关闭排气管上的阀门)
(2)关闭供水阀门,停止向泵内供水。
(3)关闭电动机。
(4)关闭补充水阀门。
(5)如果停车时间超过一天,必须将泵及汽水分离器内的水排空,以锈蚀。
注意:冬季时,每次长期停车都必须排空工作液,以防冻裂设备。

NI35-CP40-FZ3X2接近开关
NI35-CP40-VN4X2接近开关
NI35-CP40-VP4X2接近开关
NI50-CP80-FZ3X2接近开关
NI50-CP80-VN4X2接近开关
NI50-CP80-VP4X2接近开关
BI20U-CP40-AN6X2接近开关
BI20U-CP40-AP6X2接近开关
BI20U-CP40-VN4X2接近开关
BI20U-CP40-VP4X2接近开关
NI50U-CP40-AN6X2接近开关
NI50U-CP40-AP6X2接近开关
NI50U-CP40-VN4X2接近开关
NI50U-CP40-VP4X2接近开关
BI10-M30-LIU接近开关
NI15-M30-LIU接近开关
NI25-CK40-LIU-H1141接近开关
NI8-M18-LIU接近开关
BI1-EG05-AN6X接近开关
BI1-EG05-AP6X接近开关
BI1-EH04-AN6X接近开关
BI1-EH04-AP6X接近开关
BI1.5-EG08-AN6X接近开关
BI1.5-EG08-AN6X-V1131接近开关
BI1.5-EG08-AP6X接近开关
BI1.5-EG08-AP6X-V1131接近开关
BI1.5-EG08K-AN6X接近开关
BI1.5-EG08K-AN6X-V1131接近开关
BI1.5-EG08K-AP6X接近开关
BI1.5-EG08K-AP6X-V1131接近开关
BI10-G30SK-Y1X接近开关
BI10-G30-Y1接近开关
BI10-G30-Y1X接近开关
BI10-G30-Y2X接近开关
BI10-M30-Y1X-H1141接近开关
BI10-P30SK-Y1X接近开关
BI10-P30-Y0/S100接近开关
BI10-P30-Y0X/S97接近开关
BI10-P30-Y1接近开关
BI10-P30-Y1X接近开关
BI15-CK40-Y1X-H1141?接近开关
BI15-CP40-Y0X/S100接近开关
BI15-CP40-Y0X/S97接近开关
BI15-CP40-Y1X接近开关
BI2-G12SK-Y1/35L?接近开关
BI2-G12SK-Y1X接近开关
BI2-G12-Y1接近开关
BI2-G12-Y1X接近开关
BI2-G12-Y1X6M?接近开关
BI2-G12-Y2X接近开关
BI2-G12-Y2X5M接近开关
BI2-G12-Y2X6M接近开关
BI2-K11-Y1接近开关
BI2-M12-Y1X-H1141接近开关
BI2-P12SK-Y1X接近开关
BI2-P12-Y0/S100接近开关
BI2-P12-Y0X/S97接近开关
BI2-P12-Y1接近开关
BI2-P12-Y1X接近开关
BI5-G18SK-Y1X接近开关
BI5-G18-Y1接近开关
BI5-G18-Y1X接近开关
BI5-G18-Y2X接近开关
BI5-G18-Y2X10M接近开关
BI5-G18-Y2X5M接近开关
BI5-G18-Y2X/50mm10M接近开关
BI5-M18-Y1X-H1141接近开关
BI5-P18SK-Y1X接近开关
BI5-P18-Y0/S100接近开关
BI5-P18-Y0X/S97接近开关
BI5-P18-Y1接近开关
BI5-P18-Y1X接近开关
NI10-G18SK-Y1X接近开关
NI10-G18-Y1接近开关
NI10-G18-Y1X接近开关
NI10-G18-Y2X接近开关
NI10-K20-Y1接近开关
NI10-M18-Y1X-H1141接近开关
NI10-P18SK-Y1X接近开关
NI10-P18-Y0/S100接近开关
NI10-P18-Y0X/S97接近开关
NI10-P18-Y1接近开关
NI10-P18-Y1X接近开关
NI15-G30SK-Y1X接近开关
NI15-G30-Y1接近开关
NI15-G30-Y1X接近开关
NI15-M30-Y1X-H1141接近开关
NI15-P30SK-Y1X接近开关
NI15-P30-Y0/S100接近开关
NI15-P30-Y0X/S973M接近开关
NI15-P30-Y1接近开关
NI15-P30-Y1X接近开关
NI20-CK40-Y1X-H1141接近开关
NI20-CP40-Y0X/S100接近开关
NI20-CP40-Y0X/S97接近开关
NI20-CP40-Y1X接近开关
NI20-CP40-Y2X接近开关
NI25-G47-Y1接近开关
NI40-CP80-Y0/S100接近开关
NI40-CP80-Y0/S97接近开关
NI40-CP80-Y1接近开关
NI5-G12SK-Y1X接近开关
NI5-G12-Y1接近开关
NI5-G12-Y1X接近开关
NI5-G12-Y2X5M接近开关
NI5-H12-Y1接近开关
NI5-K11-Y1接近开关
NI5-M12-Y1X-H1141接近开关
NI5-P12SK-Y1X接近开关
NI5-P12-Y0/S100接近开关
NI5-P12-Y1接近开关
NI8-P18-Y0/S139接近开关
NI5-P12-Y1X接近开关
NI5-P12-Y1X/S97接近开关
E2A-S08KS02-WP-B1接近开关
E2A-S08KS02-WP-B2接近开关
E2A-S08KS02-WP-C1接近开关
E2A-S08KS02-WP-C2接近开关
E2A-S08LS02-WP-B1接近开关
E2A-S08LS02-WP-B2接近开关
E2A-S08LS02-WP-C1接近开关
E2A-S08LS02-WP-C2接近开关
E2A-S08KS02-M1-B1接近开关
E2A-S08KS02-M1-B2接近开关
E2A-S08KS02-M1-C1接近开关
E2A-S08KS02-M1-C2接近开关
E2A-S08LS02-M1-B1接近开关
E2A-S08LS02-M1-B2接近开关
E2A-S08LS02-M1-C1接近开关

来顶一下
返回首页
返回首页
 
上一篇:有关重锤式蝶阀的技术原理及应用范畴 
下一篇:真空助力泵的使用与维修 
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
全站热门文章
液压系统怎么进行酸洗 液压系统酸洗流程工艺及配方说

     针对液压系统的管道酸洗可以有效地将管内壁氧化物彻底清除,还能预防管壁过腐蚀、管道内壁再次锈蚀及管内残留化学反应沉积物等现象的发生,下面为大家介绍

顺序阀出现乱序、噪音如何解决

  顺序阀出现乱序如何解决:1、首先检查顺序阀是否装反。2、顺序阀设定压力不合理。在乱序位置适当提高顺序阀设定压力。比如调整到120bar。3、如果用的是流量再生阀,

液压式大包连浇小车的维修_同步系统的改造

   液压式大包连浇小车的维修_同步系统的改造 大包连浇装置是连铸机进行钢包更换,实现多炉浇注的必备装置。它运行的效果直接影响着连铸机的生产。常用的大包连浇

分离式液压站_液压泵站

   分离式液压千斤顶液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静

液压泵结构和液压泵工作原理描述

  齿轮泵描述齿轮泵结构图 CB-B型齿轮泵是我国最基本最为典型的外啮合齿轮泵,该泵结构如图所示。它由前盖3、泵体2、后盖1、一对齿数相同的齿轮7和9组成。齿轮

你可知道为什么液压缸的压力等级是6.3, 16, 25, 31.5M

   引言你可知道粗糙度为什么是0.8, 1.6, 3.2, 6.3, 12.5?你可知道油缸缸径为什么是63, 80, 100, 125?你可知道油缸压力为什么是6.3,

东风4型内燃机车静液压马达油封漏油原因及措施

   东风4型内燃机车静液压马达油封漏油原因及措施1.简介 东风4B、4C型机车长时间处于全负荷、高速运用状态,静液压马达油封漏故障率明显提高,静液压马达油封频繁漏

液压马达发热的原因及解决方式

   液压马达和液压泵是液压系统中最主要的两个发热源。液压马达是执行机构,主要执行旋转运动,是把压力能转化为机械能的过程。液压泵是机械能转化为压力能的过程,也

不同的双缸同步回路

   机械同步就不说了,从简单到复杂:
1. 分流阀:准确率差,流量要选小不选大(和选女友年纪的原则相同),因为准确率是以最大流量算的。
2.

工程机械液压油箱设计应注意的关键问题

     由于工程机械具有移动性的特点,所以其液压油箱的设计与普通液压油箱设计有所不同,下面就介绍下在移动式工程机械液压油箱设计中

轴向柱塞泵的工作原理与结构

   轴向柱塞泵的工作原理与结构 1.轴向柱塞泵 为了构成柱塞的往复运动条件,轴向柱塞泵都具有倾斜结构,所以轴向柱塞泵根据其倾斜结构的不同分为斜盘式(直轴式

摆线液压马达端面划伤的修复

   摆线液压马达端面划伤的修复1.简介 由于摆线液压马达是一种低速大扭矩多功能液压马达,根据工作需要在工程机械上选用十分广泛。某摆线马达,配流结构为平面配流,排

常见液压马达承受径向力和轴向力的情况

   外五星液压马达可承受较高的径向力和轴向载荷,这取决于外五星液压马达所选用的是圆锥滚子轴承。客户在选型中需要承载轴向力时可选用外五星液压马达。

电液伺服阀的内泄漏特性及故障在线分析

   电液伺服阀的内泄漏特性及故障在线分析 在汽轮机电液控制系统( DEH)中,作为电液转换元件电液伺服阀的作用十分重要。电液伺服阀稳定可靠性直接影响到机组的安全稳

加热炉_步进炉水平液压缸比例控制失效故障

   加热炉_步进炉水平液压缸比例控制失效故障 (1)步进炉水平液压缸的比例控制 步进炉水平缸所驱动的负载较大,具有很大的惯性。为了防止冲击,在步进炉水平缸刚启

多路阀的密封出现泄漏怎么办?

   多路阀的密封等设备由于长时间大扭矩机械运动,齿轮箱啮合间隙变大,造成较大的噪音及设备振动。加之密封部位长期处于高速、高温状态下运

液压油缸如何保养

   因为液压油缸要承受很大的压强,负载越重,它的压强就会越大,因此,做好液压油缸的保养工作是整个液压系统的维护最重要的一环。液压油缸

力士乐液压启-停技术有效提高工程机械燃油经济性

     多年来,液压技术已被证明非常适合移动设备用来解决其面临的不断发展的挑战。更高的性能要求催生了压力更高的液压泵和马达。对

比例多路换向阀

   比例多路换向阀 多路换向阀是指以两个以上的换向阀为主体,集安全阀、单向阀、过载闷、补油 阀、分流阀、制动阀等于一体的多功能组合阀,它具有结构紧凑、管路简单

汽轮机液压故障_油动机故障现象及分析

   汽轮机液压故障_油动机故障现象及分析 DEH控制系统(数字电液控制系统)由EH油系统、DEH数字控制器以及汽轮发电机组构成。系统采用数字计算机作为控制器,电液转换

液压机工作效率提升技巧的方法有哪些

   液压机其在机械加工中很常见且会经常使用,而且又是网站产品和关键词,所以,有必要进行该产品的熟悉和了解,好让大家知道它是什么以及怎样来正确合理使用,得到预

履带底盘与挖掘机有着重大的联系

  说到履带底盘,大家应该对其不陌生,众所周知,履带底盘在挖掘机中的应用!下面的文章就带大家了解一下挖掘机吧!从20世纪后期开始,国际上挖掘机的生产向大型化、微型化、多

超级摆缸径向柱塞液压马达的优点

   超级内五星与普通内五星之间的优点1.原先的内五星马达受高压或冲击后经常出现的故障是轴承套碎裂。HZH超级马达通过材料与结构的改变彻底解决这一问题。即使

与发动机转速连动控制的负载敏感系统

     随着发动机的转速改变油泵流量随之变化,要求油泵控制目标补偿压差和多路阀进出口压差也随之改变,要求目标补偿压差随发动机转速

挖掘机回转马达故障的分析及排除方法

   回转马达一、液压马达回转无力液压马达是执行机构,设在液压传动的末端,是把液压能转换为机械能,使平台回转。此马达采用轴向柱塞点接触中转速的液压马达。1、现

电磁换向阀

   电磁换向阀 电磁换向阀又称电动换向阀,简称电磁阀,它是借助电磁铁的吸 力推动阀芯移动的。 图G所示为三位四通电磁换向阀的结构原理和职能符号。阀的两端各有

多路阀实验时的注意要点

   多路阀主要是一种在工程机械,矿山,冶金等不同的行业和领域中使用范围非常广泛的一种设备,主要是带有压力补偿的负载敏感比例换向多路阀

过滤器的故障分析与排除

   过滤器的故障分析与排除过滤器带来的故障包括过滤效果不好给液压系统带来的故障,例如因不能很好过滤,污物进入系统带来的故障等。1.滤芯破坏变形这一故障现象表现为

变频调速功率适应型液压系统的研究

   1 引言 节能一直是液压技术的主要研究方向之一。节能型液压回路包括压力适应型回路、流量适应型回路和功率适应型回路,其中功

液压缸的维护、维修知识总结

   1.液压缸的日常检查内容①液压缸的泄漏情况。②液压缸的动作状态是否正常。③液压缸运行时的声音和温度有无异常。④活塞杆有无伤

文章分类
  【 液压机 】文章资讯
  【 液压系统 】文章资讯
  【 液压泵 】文章资讯
  【 液压阀 】文章资讯
  【 液压缸 】文章资讯
  【 液压马达 】文章资讯
  【 液压附件 】文章资讯
  【 工程机械 】文章资讯
热门文章排行
  • 全部
  • 本月
  • 本周
  • 今天
推荐资讯
液压泵结构和液压泵工作原理描述
液压泵结构和液压泵工
液压油泵分类详解及工作原理图解
液压油泵分类详解及工
液压传动系统做功原理详解及常见参数符合解析
液压传动系统做功原理
泵结构三维设计软件全参数化简介
泵结构三维设计软件全
推荐产品
468-800-50BM/日本Azbil TACO气动元件
468-800-50BM/日本Azb
日本油研方向控制阀
日本油研方向控制阀
DSLHG-10-1-ET-A200-C-13日本油研座阀型电液换向阀
DSLHG-10-1-ET-A200-C
LSVHG-04EH-750-2P-ET-WEA-B1-20日本油研伺服阀
LSVHG-04EH-750-2P-ET
EHFBG-06-250-C-E-S-5001日本油研电液比例阀
EHFBG-06-250-C-E-S-5
PM37-06BC-3.7-A240-30日本油研PM系列电机泵
PM37-06BC-3.7-A240-3
VPVQQ-PSAW-06C-PSSO-06BA-60日本油研变量叶片泵
VPVQQ-PSAW-06C-PSSO-
ASR2-C-CXD200N-A00-12日本油研伺服电机驱动泵
ASR2-C-CXD200N-A00-1
日本油研高压柱塞泵A3H145-FR14K-10
日本油研高压柱塞泵A3
日本油研高压柱塞泵A3H56-FR01KK-10
日本油研高压柱塞泵A3
栏目最新文章