加入收藏 | 设为首页 | 会员中心 | 我要投稿 |
站内搜索:
日本油研
您当前的位置:首页 > 液压文章资讯 > 液压泵文章资讯

液压电机丹尼逊叶片泵样机的性能试验

时间:2019-11-24 12:09:53  来源:  作者:  浏览量: 6
简介:液压电机泵是将电动机与液压泵一体化的新一代液压动力单元,将电能直接转化为液压能输出。近年来,美国、德国、日本和台湾等发达国家和地区对电动机与液压泵融合化(hybrid/in
液压电机泵是将电动机与液压泵一体化的新一代液压动力单元,将电能直接转化为液压能输出。近年来,美国、德国、日本和台湾等发达国家和地区对电动机与液压泵融合化(hybrid/integrated)都高度重视,液压电机泵已成为液压技术创新发展的重要方向[1~4],由于电机泵工业化价值突出,在国内外,有关电机泵的研究论文和相关试验数据公开发表的还很少,有关资料文献大多以专利形式出现。相对于传统的“三段式”液压动力单元—电机油泵组(即由独立电动机、联轴器和液压泵组成),液压电机泵具有结构紧凑、噪声低、无外泄漏和效率较高等优点。液压电机泵的独特优点,使其具有重要研究价值和广阔的应用前景。

本文针对研制出的首台液压电机丹尼逊叶片泵样机,建立电机泵性能试验系统,获得样机的输入电量参数、输出液压能参数及内部转子转速和壳体内部压力等参数,得到液压电机丹尼逊叶片泵样机的转子转速、噪声和效率等随输出压力变化的特性,并与同等功率液压电机油泵组的测试结果进行对比。本研究为液压电机泵优化及创新发展提供有益的参考。

1 试验系统及方法

1·1 液压电机丹尼逊叶片泵的性能试验系统

电机泵作为一种新一代液压动力单元,目前还没有相关的测试标准,试验中参照电动机和丹尼逊叶片泵的测试标准[8~9],设计确定了电机丹尼逊叶片泵样机的性能试验系统。

图2为电机丹尼逊叶片泵样机的试验系统图,手动换向阀3置于左位时,电机丹尼逊叶片泵样机1输出油液直接回油箱,处于空载运行状态;手动换向阀3置于右位,且两个节流阀5、6处于关闭状态时,通过调节溢流阀2,改变输出压力,实现对电机丹尼逊叶片泵样机1进行加载。

1·2 电机泵与电机油泵组性能对比试验

电机丹尼逊叶片泵样机进行空载和负载性能试验时,油箱内油液温度保持在(30±2)℃。空载试验测量参数包括空载输入功率、空载转速和空载电流,其中空载电流为电机丹尼逊叶片泵样机空载运行时定子三相绕组中通过的电流,绝大部分的空载电流产生旋转磁场,称为空载励磁电流,是空载电流的无功分量;小部分用于克服电机丹尼逊叶片泵样机空载运行时的各种功率损耗(如机械摩擦、铁芯损耗和粘性负载损耗等),这一部分是空载电流的有功分量,因所占比例很小,可忽略不计。负载试验时,在外加电压及频率保持不变条件下,对电机丹尼逊叶片泵样机进行测试,研究转子转速n、输出流量q、定子绕组电流i、功率因数cosφ、功率p、效率η等与输出压力po之间的关系,通过试验曲线直接反映电机丹尼逊叶片泵样机运行过程中主要性能指标与运行参数的变化规律。

将电机丹尼逊叶片泵更换为电机油泵组(图2),选用11 kw标准y2系列电动机和pc20v-5型子母丹尼逊叶片泵,在相同试验条件下,对电机油泵组进行性能测试,测量出电机油泵组转速nz、流量qz、定子电流iz、功率因数cosφz、功率pz、效率ηz、噪声等参数,并确定与输出压力po之间的关系。

2 试验结果及分析

2·1 外形尺寸及体积

电机丹尼逊叶片泵样机与同等功率电机油泵组实物比较如图3所示。由图可见,电机丹尼逊叶片泵样机(图3左侧)在轴向尺寸上比同等功率电机油泵组(图3右侧)缩短61%,体积减小约50%。

2·2 转子转速与输出流量特性

转速和流量随着输出压力的变化规律如图4所示。图4a为转子转速随输出压力的变化曲线,其中n为电机丹尼逊叶片泵样机的转子转速变化曲线, nz为电机油泵组的转子转速变化曲线;图4b为输出流量随输出压力的变化曲线,其中q为电机丹尼逊叶片泵样机的输出流量曲线,qt为电机丹尼逊叶片泵的理论流量(即无泄漏的输出流量)曲线,qz为电机油泵组输出流量曲线。

输出流量为

q=nd-δq (1)

式中 d———泵的几何排量 δq———泄漏量

由图可见,空载时,电机丹尼逊叶片泵的转子转速与电机油泵组接近,随着输出压力的升高,电机丹尼逊叶片泵样机的转子转速明显下降,而电机油泵组的转子转速稍下降,表明与标准电动机相比,电机丹尼逊叶片泵样机内的电机负载刚性较低。空载时,二者转速和输出流量基本相同,随着负载压力的增加,电机丹尼逊叶片泵样机的输出流量q与其理论流量qt的差值偏大,对照电机油泵组的输出流量qz,可知电机丹尼逊叶片泵样机的输出流量降低的主要因素是其内部存在着额外的泄漏量,且此泄漏量与输出压力近似成线性关系,表明泄漏属于层流流态;与额外的泄漏量相比,电机丹尼逊叶片泵样机的转子转速随输出压力增大而下降只是其输出流量减小的一个次要因素。

2·3 噪声

分别在距电机丹尼逊叶片泵样机与电机油泵组轴线方向1m处放置噪声频谱分析仪,进行a声级噪声测量,其噪声声级随输出压力的变化曲线如图5所示。电机丹尼逊叶片泵样机噪声明显低于电机油泵组的噪声。空载(即0mpa)时,电机丹尼逊叶片泵样机的噪声声级比电机油泵组低3 db,随着输出压力的升高二者声级逐渐升高、声级差进一步加大,当输出压力大于12mpa时,电机丹尼逊叶片泵样机的噪声声级趋于恒定,为72 db;而电机油泵组的噪声声级为79·5 db(对应输出压力po=14mpa),且随着压力的升高噪声声级有继续增大的趋势。

采用1/3倍频对电机丹尼逊叶片泵样机和电机油泵组的噪声频谱进行分析,图6给出了二者在输出压力为12mpa时的噪声频谱图,横坐标为1/3倍频程中心频率,纵坐标为声压级。从图中可以看出电机丹尼逊叶片泵样机的噪声主频为4 000hz,它决定了声级大小;电机油泵组的噪声主频为300、3 150hz;二者比较发现,电机丹尼逊叶片泵样机属于高频噪声,其噪声源主要是气穴噪声,而电机油泵组的噪声主频相对较低,其主要噪声源还包含着机械噪声成分。

在试验过程中,采用透明有机玻璃制成的接线板对电机泵样机壳体内液流进行了观察,发现壳体内的油流携带有许多细小气泡,这些气泡在高压区溃灭形成了高频气穴噪声。图7给出了样机壳体左侧腔体(图1)内的真空度(真空表由接线板接入,见图3)随进口油温的变化曲线。

在油温较低时真空度较大,随着油温升高、油液粘度减小,流动阻力减小,真空度逐渐减小,当油温大于41℃后,真空度迅速减小,图7清楚证明电机泵样机存在内部流道狭窄、吸油阻力大的问题。在样机制造过程中,壳体铸件的轴向尺寸偏小和内流道狭窄,使得定子线圈绕组距吸油口太近,造成电机丹尼逊叶片泵样机内部流道存在负压区和油液中的气泡析出。通过增大壳体铸件轴向尺寸、扩大内流道,避免吸油过程中的气泡析出及其气穴噪声,可进一步大幅降低电机丹尼逊叶片泵样机的噪声。

2·4 效率

电机丹尼逊叶片泵样机的容积效率为

总效率为

式中 pi———进油口压力

pem———输入电功率

效率随输出压力的变化如图8所示,其中ηvt为电机丹尼逊叶片泵的理论容积效率,ηt为理论总效率,ηv为电机丹尼逊叶片泵样机的容积效率,ηvz为电机油泵组的容积效率。当输出压力达到14mpa时,电机丹尼逊叶片泵的理论总效率约为0·56;当输出压力po大于6mpa时,电机丹尼逊叶片泵样机的容积效率和总效率明显下降。电机油泵组中的丹尼逊叶片泵容积效率随着压力的升高逐渐降低、变化平缓。电机丹尼逊叶片泵的理论效率曲线与电机油泵组的总效率曲线基本重合。

电机丹尼逊叶片泵样机存在额外的内泄漏,致使电机丹尼逊叶片泵样机的容积效率随其输出压力的升高而下降较快,其总效率也相应降低。

现对电机丹尼逊叶片泵样机出现的额外内泄漏进行分析。图9给出了电机丹尼逊叶片泵样机中泵芯的装配图,样机中采用了高压子母丹尼逊叶片泵的标准泵芯,其高压区由o形密封圈1、聚四氟乙烯密封圈3和组合密封2来保证与低压区隔离。首先,可以断定o形密封圈1处的密封是可靠的,否则会产生外泄漏,试验过程中样机未出现任何外泄漏;其次,组合密封圈2是o形密封圈与聚四氟乙烯挡圈的组合,其密封是依靠橡胶圈的压缩量来保证的,此处泄漏也可以排除;聚四氟乙烯密封圈3为硬质塑料,样机装配时此处基本无预压缩量,泵芯座5内孔与泵芯组件4外圆柱面之间为间隙配合,因此密封圈3位置处的泄漏很容易发生。当输出压力较高时(po>6 mpa时),泵芯座在液压力作用下将产生较大的径向和轴向变形,径向变形使得泵芯座5的内径增大,泵芯组件与泵芯座之间的间隙随之增大,泄漏相应增加。图9中,用带箭头的虚线表示了电机泵样机内的额外泄漏的路径及其方向。

改进泵芯座与泵芯组件之间的密封,优化泵芯座的结构,可以彻底避免电机丹尼逊叶片泵样机中出现的额外的内泄漏,保证电机丹尼逊叶片泵的容积效率和总效率均不低于传统的电机油泵组。
来顶一下
返回首页
返回首页
 
上一篇:液压电机样机丹尼逊叶片泵的噪声测量及分析 
下一篇:丹尼逊叶片泵的管理要点 
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
全站热门文章
液压系统怎么进行酸洗 液压系统酸洗流程工艺及配方说

     针对液压系统的管道酸洗可以有效地将管内壁氧化物彻底清除,还能预防管壁过腐蚀、管道内壁再次锈蚀及管内残留化学反应沉积物等现象的发生,下面为大家介绍

顺序阀出现乱序、噪音如何解决

  顺序阀出现乱序如何解决:1、首先检查顺序阀是否装反。2、顺序阀设定压力不合理。在乱序位置适当提高顺序阀设定压力。比如调整到120bar。3、如果用的是流量再生阀,

液压式大包连浇小车的维修_同步系统的改造

   液压式大包连浇小车的维修_同步系统的改造 大包连浇装置是连铸机进行钢包更换,实现多炉浇注的必备装置。它运行的效果直接影响着连铸机的生产。常用的大包连浇

分离式液压站_液压泵站

   分离式液压千斤顶液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静

液压泵结构和液压泵工作原理描述

  齿轮泵描述齿轮泵结构图 CB-B型齿轮泵是我国最基本最为典型的外啮合齿轮泵,该泵结构如图所示。它由前盖3、泵体2、后盖1、一对齿数相同的齿轮7和9组成。齿轮

你可知道为什么液压缸的压力等级是6.3, 16, 25, 31.5M

   引言你可知道粗糙度为什么是0.8, 1.6, 3.2, 6.3, 12.5?你可知道油缸缸径为什么是63, 80, 100, 125?你可知道油缸压力为什么是6.3,

东风4型内燃机车静液压马达油封漏油原因及措施

   东风4型内燃机车静液压马达油封漏油原因及措施1.简介 东风4B、4C型机车长时间处于全负荷、高速运用状态,静液压马达油封漏故障率明显提高,静液压马达油封频繁漏

液压马达发热的原因及解决方式

   液压马达和液压泵是液压系统中最主要的两个发热源。液压马达是执行机构,主要执行旋转运动,是把压力能转化为机械能的过程。液压泵是机械能转化为压力能的过程,也

不同的双缸同步回路

   机械同步就不说了,从简单到复杂:
1. 分流阀:准确率差,流量要选小不选大(和选女友年纪的原则相同),因为准确率是以最大流量算的。
2.

工程机械液压油箱设计应注意的关键问题

     由于工程机械具有移动性的特点,所以其液压油箱的设计与普通液压油箱设计有所不同,下面就介绍下在移动式工程机械液压油箱设计中

轴向柱塞泵的工作原理与结构

   轴向柱塞泵的工作原理与结构 1.轴向柱塞泵 为了构成柱塞的往复运动条件,轴向柱塞泵都具有倾斜结构,所以轴向柱塞泵根据其倾斜结构的不同分为斜盘式(直轴式

摆线液压马达端面划伤的修复

   摆线液压马达端面划伤的修复1.简介 由于摆线液压马达是一种低速大扭矩多功能液压马达,根据工作需要在工程机械上选用十分广泛。某摆线马达,配流结构为平面配流,排

常见液压马达承受径向力和轴向力的情况

   外五星液压马达可承受较高的径向力和轴向载荷,这取决于外五星液压马达所选用的是圆锥滚子轴承。客户在选型中需要承载轴向力时可选用外五星液压马达。

电液伺服阀的内泄漏特性及故障在线分析

   电液伺服阀的内泄漏特性及故障在线分析 在汽轮机电液控制系统( DEH)中,作为电液转换元件电液伺服阀的作用十分重要。电液伺服阀稳定可靠性直接影响到机组的安全稳

加热炉_步进炉水平液压缸比例控制失效故障

   加热炉_步进炉水平液压缸比例控制失效故障 (1)步进炉水平液压缸的比例控制 步进炉水平缸所驱动的负载较大,具有很大的惯性。为了防止冲击,在步进炉水平缸刚启

多路阀的密封出现泄漏怎么办?

   多路阀的密封等设备由于长时间大扭矩机械运动,齿轮箱啮合间隙变大,造成较大的噪音及设备振动。加之密封部位长期处于高速、高温状态下运

液压油缸如何保养

   因为液压油缸要承受很大的压强,负载越重,它的压强就会越大,因此,做好液压油缸的保养工作是整个液压系统的维护最重要的一环。液压油缸

力士乐液压启-停技术有效提高工程机械燃油经济性

     多年来,液压技术已被证明非常适合移动设备用来解决其面临的不断发展的挑战。更高的性能要求催生了压力更高的液压泵和马达。对

比例多路换向阀

   比例多路换向阀 多路换向阀是指以两个以上的换向阀为主体,集安全阀、单向阀、过载闷、补油 阀、分流阀、制动阀等于一体的多功能组合阀,它具有结构紧凑、管路简单

汽轮机液压故障_油动机故障现象及分析

   汽轮机液压故障_油动机故障现象及分析 DEH控制系统(数字电液控制系统)由EH油系统、DEH数字控制器以及汽轮发电机组构成。系统采用数字计算机作为控制器,电液转换

液压机工作效率提升技巧的方法有哪些

   液压机其在机械加工中很常见且会经常使用,而且又是网站产品和关键词,所以,有必要进行该产品的熟悉和了解,好让大家知道它是什么以及怎样来正确合理使用,得到预

履带底盘与挖掘机有着重大的联系

  说到履带底盘,大家应该对其不陌生,众所周知,履带底盘在挖掘机中的应用!下面的文章就带大家了解一下挖掘机吧!从20世纪后期开始,国际上挖掘机的生产向大型化、微型化、多

超级摆缸径向柱塞液压马达的优点

   超级内五星与普通内五星之间的优点1.原先的内五星马达受高压或冲击后经常出现的故障是轴承套碎裂。HZH超级马达通过材料与结构的改变彻底解决这一问题。即使

与发动机转速连动控制的负载敏感系统

     随着发动机的转速改变油泵流量随之变化,要求油泵控制目标补偿压差和多路阀进出口压差也随之改变,要求目标补偿压差随发动机转速

挖掘机回转马达故障的分析及排除方法

   回转马达一、液压马达回转无力液压马达是执行机构,设在液压传动的末端,是把液压能转换为机械能,使平台回转。此马达采用轴向柱塞点接触中转速的液压马达。1、现

电磁换向阀

   电磁换向阀 电磁换向阀又称电动换向阀,简称电磁阀,它是借助电磁铁的吸 力推动阀芯移动的。 图G所示为三位四通电磁换向阀的结构原理和职能符号。阀的两端各有

多路阀实验时的注意要点

   多路阀主要是一种在工程机械,矿山,冶金等不同的行业和领域中使用范围非常广泛的一种设备,主要是带有压力补偿的负载敏感比例换向多路阀

过滤器的故障分析与排除

   过滤器的故障分析与排除过滤器带来的故障包括过滤效果不好给液压系统带来的故障,例如因不能很好过滤,污物进入系统带来的故障等。1.滤芯破坏变形这一故障现象表现为

变频调速功率适应型液压系统的研究

   1 引言 节能一直是液压技术的主要研究方向之一。节能型液压回路包括压力适应型回路、流量适应型回路和功率适应型回路,其中功

液压缸的维护、维修知识总结

   1.液压缸的日常检查内容①液压缸的泄漏情况。②液压缸的动作状态是否正常。③液压缸运行时的声音和温度有无异常。④活塞杆有无伤

文章分类
  【 液压机 】文章资讯
  【 液压系统 】文章资讯
  【 液压泵 】文章资讯
  【 液压阀 】文章资讯
  【 液压缸 】文章资讯
  【 液压马达 】文章资讯
  【 液压附件 】文章资讯
  【 工程机械 】文章资讯
热门文章排行
  • 全部
  • 本月
  • 本周
  • 今天
推荐资讯
液压泵结构和液压泵工作原理描述
液压泵结构和液压泵工
液压油泵分类详解及工作原理图解
液压油泵分类详解及工
液压传动系统做功原理详解及常见参数符合解析
液压传动系统做功原理
泵结构三维设计软件全参数化简介
泵结构三维设计软件全
推荐产品
468-800-50BM/日本Azbil TACO气动元件
468-800-50BM/日本Azb
日本油研方向控制阀
日本油研方向控制阀
DSLHG-10-1-ET-A200-C-13日本油研座阀型电液换向阀
DSLHG-10-1-ET-A200-C
LSVHG-04EH-750-2P-ET-WEA-B1-20日本油研伺服阀
LSVHG-04EH-750-2P-ET
EHFBG-06-250-C-E-S-5001日本油研电液比例阀
EHFBG-06-250-C-E-S-5
PM37-06BC-3.7-A240-30日本油研PM系列电机泵
PM37-06BC-3.7-A240-3
VPVQQ-PSAW-06C-PSSO-06BA-60日本油研变量叶片泵
VPVQQ-PSAW-06C-PSSO-
ASR2-C-CXD200N-A00-12日本油研伺服电机驱动泵
ASR2-C-CXD200N-A00-1
日本油研高压柱塞泵A3H145-FR14K-10
日本油研高压柱塞泵A3
日本油研高压柱塞泵A3H56-FR01KK-10
日本油研高压柱塞泵A3
栏目最新文章