在机械加工中,工艺系统在各种热源(摩擦热、切削热、环境温度、热辐射等) 的作用下,产生温度场,致使机床、刀具、工件、夹具等产生热变形,从而影响工件与刀具间的相对位移,造成加工误差,进而影响零件的加工精度. 根据英国伯明翰大学J . Pe2clenik 教授调查统计表明,在精密加工中,热变形引起的制造误差,占总制造误差的40 %~70 % . 所以,如何减少热变形,提高加工精度,是机床设计中非常棘手和重要的问题.
目前,有很多学者通过试验和理论分析,对机床的热变形进行研究. 如浙江大学,对弹性热接触问题用有限元方法进行研究,而且对有限元系统进行开发,并应用于TKA6916 数控落地铣镗床的结构优化上,取得了一定的成果[1 ] . Okuyama 等人,通过实验测量了在平面研磨机工作过程中,砂轮主轴和工作台的相对热位移,并使用有限元方法对研磨机的热变形进行理论研究,结果表明理论与实验结论相一致[ 2 ] . Moriwaki 等人通过实验和有限元方法研究了由于环境温度变化引起的热变形对加工中心的影响[3 ] . 本文将通过有限元方法,对新设计的XK717数控铣床进行整机热特性分析,并与XK510 数控铣床(成熟产品) 的分析结果进行比较,根据比较结果,找出XK717 数控铣床热特性的薄弱部件,从而为提高数控铣床的热特性指明了改进的方向.
1 整机有限元模型
考虑到XK717 数控铣床的结构相当复杂,为了便于有限元分析,对其结构进行适当的简化. 并采用20 节点体单元SOL ID95 进行网格划分,整机有限元模型如图1 所示.
2 分析条件
XK717 数控铣床的主轴系统前支承采用7020C 轴承,成对串联、开口朝下安装,中间支承也采用7020C 轴承,成对串联、开口朝上安装,设计预紧力为500 N ,后支承采用7018C 轴承,成对背靠背安装,设计预紧力为200 N ,轴承布置如图2 所示.
对于典型的铣削工艺,使用立铣刀(高速钢) 直径为40 mm ,齿数为Z = 6 ,对碳钢进行加工,其铣削深度ap = 20 mm ,铣削宽度ae = 2 mm ,每齿进给量af = 0. 01 mm ,转速为3500 r/ min ,假设工作台上的能量沿X 方向的分布,如图3 所示.
并假设被工作台吸收的总能量为切削能量的10 %. 根据这些条件可计算出热分析的边界条件,具体的计算方法见文献[4 ]. 机床各部分材料特性如表1所示.
3 结果分析
图4 为主轴转速在3 500 r/ min 时,XK717 数控铣床整机温度场云图. 从图中可以看出,铣床温度比较高的部位在主轴的前支承部位;前、中、后支承的平均温度值分别为62. 13 ℃, 57. 44 ℃, 45. 35℃. 图5 为XK717 数控铣床整机热变形云图,从图中可以看出,主轴箱前面部分热变形比较严重,而主要影响加工精度的主轴前端面平均热变形量为0. 143 mm.
图6 、图7 分别为在相同仿真条件下,XK510 数控铣床的温度场和热变形场的云图. 前、中、后支承的平均温度值分别为52. 7 ℃,52. 71 ℃,36. 5 ℃,而主轴前端面平均热变形量为0. 062 mm.通过比较可知,XK717 数控铣床的轴承温升比XK510 数控铣床的温升要高,而主轴前端面热变形量大2 倍多. 这主要是因为:
(1) XK717 数控铣床的轴承个数多,前、中、后各2 个,共6 个,而XK510 铣床只有4 个,前支承两个,中、后支承各1 个;
(2) XK717 铣床是大型数控铣床,主轴直径为0. 1 m 左右,而XK510 铣床只有0. 065 m ,这就表明在选择轴承时,新设计的XK717 数控铣床的轴承尺寸要比原铣床的大的多.
上述2 个原因直接影响到数控铣床轴承的发热量,进而影响到轴承的温升和主轴的热变形. 由于XK510 数控铣床是成熟产品,在使用中,加工精度一直比较高,而分析结果表明新设计的XK717 数控铣床热变形精度明显没有XK510 数控铣床的精度高. 因此,很有必要对XK717 数控铣床采取一些措施,来减少机床的热变形. 从结果云图可以看出,主轴及主轴箱部件是影响主轴热变形的关键所在.
4 结 语
通过对新开发设计的XK717 数控铣床进行整机热特性分析,并与XK510 数控铣床的结果进行比较,结果表明XK717 数控铣床的热变形精度没有原铣床的精度好,并且对其原因进行了分析,而且从结果云图中可以看出,XK717 数控铣床主轴及主轴箱部件是温度和热变形最为严重的部件,因此,应采取相应的措施来提高主轴和主轴箱部件的热特性.
---------汇荣流体 |